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Scattering by Abrupt Discontinuities on
Planar Dielectric Waveguides

G. H. BROOKE anp M. M. Z. KHARADLY

Abstract —Two unifying aspects of the problem of scattering by an
abrupt discontinuity on a planar dielectric waveguide are considered. The
first aspect is concerned with the numerical solution of the scattering
problem through consideration of a corresponding bounded waveguide
problem in which perfect electric or magnetic conductor bounds with
variable locations are introduced. It is shown that the solutions to the
bounded problem, when numerically integrated over a range of bound
locations defined within half a wavelength, allow the complete mode spectra
of the unbounded waveguide to be accurately accounted for. Scattering
solutions for both TE- and TM-modes are presented for a wide range of
discontinuities and, in the TE-mode case, are in agreement with results
obtained using the method due to Rozzi [5]. The second aspect is concerned
with the relationship between scattering and “inter-waveguide mode ortho-
gonality.” Based on a simple iterative scheme, a meaningful physical
interpretation of the scattering process is developed. This allows the
scattering to be classified as being of first or higher order and to be
explained in terms of the physical characteristics of the mode fields.

I. INTRODUCTION

IELECTRIC surface waveguides are used in a variety

of applications ranging in frequency from ultrahigh
through optical. Discontinuities in cross section inevitably
occur in any waveguide system due to construction toler-
ances and misalignment in component interconnections. In
many applications, discontinuities are intentionally in-
volved; microwave antennas and feeds and integrated optics
couplers and lenses are examples.

For the purpose of analysis, it is sufficient in many cases
to describe a discontinuity by an abrupt change in cross
section. In other cases, it may be possible to approximate
an arbitrary discontinuity by a succession of abrupt changes
in the waveguide cross section. In all cases, an accurate
theoretical treatment and an understanding of the scatter-
ing properties of an abrupt discontinuity are essential for
the proper design of complex dielectric waveguide compo-
nents and systems.

The exact solution of the discontinuity problem on an
open waveguide requires that the field contributions from
the continuous spectrum be specified over the infinite
waveguide cross section. This results in complex spatial
and spectral integrations for which exact evaluations do
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not appear possible. Consequently, previous investigations
of the dielectric waveguide step discontinuity problem have
been concerned with approximate solution techniques (e.g.,
[1}-[4]). These techniques are limited to various degrees in
the scope of their applicability. Basically, this is due to the
manner in which the continuous spectrum of modes on the
unbounded waveguide is treated. More recently, Rozzi [5]
has described a new technique which employs Laguerre
polynomials in a Ritz—Galerkin variational solution and
which has been successfully applied to TE-mode scattering
by a step on a planar dielectric waveguide. This solution
technique does not appear to be as readily applied to the
TM-mode case, however.

The approach presented in this paper circumvents some
inherent difficulties associated with the previous methods
and it is applicable to dielectric waveguides having arbi-
trary permittivity and to step discontinuities of any size.
Essentially, by maintaining a direct relationship to modal
quantities, it is mathematically less complex, provides some
insight into the scattering process and, finally, is as easily
applied to TM- as it is to TE-mode scattering. The basis of
the present approach is the reduction of the unbounded
(original) problem to a bounded (modified) problem where
the open structure is enclosed by perfect electric or mag-
netic conductors. The solution to the original problem is
then extracted from that of the corresponding modified
problem [6], [7]. This process leads to the development of a
simple and accurate numerical technique for solving the
discontinuity problem in the “variable-bound” approach
and of a simple and meaningful interpretation of the
scattering process. ‘

The main points discussed in this paper include: a) the
limitations of the straightforward bounding procedure ap-
plied hitherto; b) the procedures necessary to fully and
accurately account for the continuous spectrum; c¢) the
relationships between the scattering process and mode
orthogonality; and d) the characteristics of TE- and TM-
mode scattering over a wide range of discontinuities.

II. THE BOUNDED APPROACH

The bounded approach involves bounding the dielectric
waveguide with either perfect electric ( E-bound) or perfect
magnetic (/-bound) conductors, as shown in Fig. 1, and
then solving the bounded problem using mode matching.
Because of the one-to-one correspondence of the mode
spectra of the bounded and unbounded configurations, the
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Fig 1. Bounded waveguide discontinuity configuration.
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Fig. 2. Mode spectra in the k-plane.

solution for the bounded problem provides an approximate
solution of the original problem. A k-plane representation
of the mode spectra for the two configurations is shown in
Fig. 2. For the bounded configuration, the modes in the
spectral ranges k,<B<ve, ko, 0<B<k,, and — joo<pB
< — jO are usually referred to as slow, fast, and evanes-
cent, respectively, whereas in the unbounded configuration
the corresponding modes are referred to as surface wave,
radiation, and attenuated radiation, respectively [7]. In the
above, B is the propagation coefficient, ko =27/A is the
free-space wavenumber and ¢, is the relative permittivity of
the dielectric.

A summary of the functional form of the modes in a
uniform waveguide (either waveguide 4 or waveguide B in
Fig. 1) is given in Table I for TE-modes ( H-bound) and in
Table II for TM-modes ( E-bound).

In the above tables, p, = (¢,kZ —B?)"/? and p, = (k} —
B3)'/? are the transverse propagation coefficients, 7, is the
intrinsic impedance of free space, and F(B) and F,,(8)
are the characteristic equations of the structure for TE- and
TM-modes, respectively. The correspondence between the
fields of the bounded and unbounded configurations is
examined in Appendix 1. The analysis indicates that the
fast and the evanescent modes are functionally identical to
the continuous spectrum modes at discrete values of B
(defined by solutions of Fz(f) or F,,(B) in the appropriate
spectral ranges), whereas the slow and the surface wave
modes become functionally identical in the limit as ¢, — oo.
In practice, however, 7, need only be a few free-space
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wavelengths for the slow and the surface wave modes to
exhibit virtually identical behavior.

The correspondence of the slow and surface wave modes
is an important factor affecting the implementation of the
bounded approach and, hence, will be illustrated by ex-
amining the value of the propagation coefficient 8 as a
function of 75z. Consider an example in which ¢, = 5.0 and
t, = 0.01A,. Fig. 3 gives plots of the ratio of the propaga-
tion coefficients of the slow and of the surface wave modes
versus (f5 — 1)/ A, for each type of mode with each type
of bound. The graphs for TE- (E-bound) and for TM-
( H-bound) modes exhibit a cutoff behavior and thus sug-
gest that for these mode types the respective bounds are, in
general, inappropriate. More appropriately, however, the
graphs for TE- ( H-bound) and for TM- (E-bound) modes
exhibit no low-frequency cutoff and also indicate that the
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values of the slow-mode propagation coefficients do not
differ significantly from those for the corresponding surface
wave modes over a wider range of (13 —1;)/A,.

It may be noted that in the above example the surface
wave mode is relatively loosely bound to the dielectric. As
€, or 7, is increased, there will be even less discrepancy
between the values of B for much smaller values of (z; —
t,)/ A, except for higher order slow modes close to cutoff.

A. Mode Matching

Referring to Fig. 1, the transverse electric and magnetic
field vectors are denoted by e and h, respectively. Let a
mode of unit amplitude be incident from waveguide 4. The
mode-matching equations in the plane of the discontinuity
may be written as

(1

[ee)
ela+ E aner[: 2 ”l m

n=1 m=1
S bt
=1

In the above equations, the subscript i denotes the incident
mode, and superscripts ¢ and b denote waveguides 4 and
B, respectively. The expressions for the fields in (1) and (2)
can be found in Table I or Table II.

In order that solutions for the scattering coefficients
{a,.b,} may be obtained, the infinite sums in (1) and (2)
are truncated. In this work, equal numbers of modes N are
used to approximate the fields on either side of the dis-
continuity, as has been established in [8]. The conventional
approach [9] to solving (1) and (2) is to use the orthogonal-
ity relations between the modes given by
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to obtain
N
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where 68 is the Kronecker delta and
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The relations in (7) and (8) describe the ““inter-waveguide
orthogonality” of the modes for which explicit expressions
are given in Appendix II. Expressions for P? and P} are
also given in Appendix II. Thus, the mode coefficients
{b,,} are obtained by solving the linear system of (5) and
the mode coefficients {a,} are obtained by substitution
into (6).

It is appropriate at this point to define a set of normal-
ized mode coefficients as follows:

a,=a,(Py/P)"? (9)
b, =b, (Pt /P*)"?, (10)

These coefficients may be used to obtain a useful check on
the mode-matching solutions—the power conservation er-
ror P, being given by

—I*Elal—Elblz

n=1

m,n=1,--+,N.

(1)

where N and pr are the total numbers of propagating

modes in waveguides A and B, respectively. Furthermore,
the relative power contained in the fast modes is given by

Ny Ny
R= 2 [a)*+ X [b) (12)
n=N¢+1 = NP

where N¢ and N are the numbers of slow modes in
waveguides 4 and B, respectively. As will be illustrated in
Section III, the value of P, is an approximation to the
normalized radiated power in the original problem. In the
discussion and analysis to follow, coefficients {a,} and
{b,,} will be conventionally associated with waveguides 4
and B, respectively.

B. Accuracy of Solutions

The accuracy of the solution of the modified problem, as
an approximation to the solution of the original problem,
depends mainly upon two factors; namely, the bound
location ¢ and the number of modes N. It will be shown
that the value of N required for a certain accuracy will, in
general, depend on the choice of 7;. The effect of these
factors will be demonstrated by considering a numerical
example (e, = 5.0, t{ =0.07A,, and ¢} =0.35A,) in which
the second slow mode from waveguide B is incident. This
mode has been chosen because its behavior is typical of
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TABLE III
DEPENDENCE OF THE SOLUTIONS ON N
ty, = 2.0 ty, = 4.0
N [bz| /b, P IbZ( /b P

5 | .4237 0 .5974 2203 | © 8.58
10 | .4050 | .5164 | .0136 4444 L2678 | 2330
15 | .4081 | .5490 | .0013 L4299 | .549 0132
20 | .4081 | .5537 | .0002 L4265 | L5604 | .0130
25 | L4051 | L5541 | 2x107° ||.4286 | .5770 | .0061
30 [ 4082 | L5545 | 2x107° ||.429% | .593% | .c009
40 | .4082 | .5546 | 1x107> |].4294 | .5961 | .o000L

cases in which the scattering solutions of the bounded
problems are sensitive to the bound location. In order that
a comparison with the results obtained using Rozzi’s
method may eventually be made, TE-mode propagation is
discussed.

1) The Dependence on N: The effect of N can be de-
duced by computing the solution of the above example for
two different values of ¢ and by observing the behavior of
the solutions as a function of the number of modes. The
results are summarized in Table III where the reflection
coefficient b, of the incident mode is tabulated for various
values of N and for each value of 15, =15 /A,. The corre-
sponding values of P, are also given in this table.

The above results are typical of the convergence as a
function of N. It may be noted that faster convergence
occurs for the smaller value of f5,. These results, which
imply that higher order modes are excited more readily as
tg, increases, may be explained as follows. The excitation
of the high-order evanescent modes depends on the inter-
waveguide orthogonality of these modes with respect to the
low-order slow modes and, hence, is related to the trans-
verse field behavior of the modes in the range ¢, < | x| <tz
in this range, the slow modes have no phase reversals
whereas the evanescent modes have approximately M pﬁase
reversals (M is the mode order). Accordingly, from sta-
tionary phase arguments, the high-order modes tend to be
orthogonal to the low-order modes as M becomes large.
However, as f5, increases, the Mth mode tends to be less
orthogonal to the slow modes because the M phase rever-
sals are now more dispersed along the x coordinate.

An important feature of the results shown in Table III is
the different value of b, to which the solution converges for
different values of 1.

2) The Dependence on ty: The magnitude of b,, in the
previous example, is plotted versus t,, in Fig. 4. These
results were calculated with N =40' to achieve a value of
P, less than 0.5 percent over the range of large 75,. The
oscillating value of |b,| appears to have the following
properties: i) a period of oscillation equal to 0.5; ii) a
constant mean value; and iii) a slow rate of convergence.
These properties may be qualitatively explained by consid-
ering the dispersion characteristics of the modes as func-

"For convenience, this large value of N was used over the whole range,
although the results 1n the previous section indicate that this was not
necessary.
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tions of #,,. Fig. 3 shows that the dispersion of the slow
modes is slight for practical values of ¢, and diminishes
with increasing ¢5,. The normalized propagation coeffi-
cients 8/k of the fast-modes in waveguide B are shown in
Fig. 5 as a function of fy,. It is evident that these modes
are highly dispersive over the lower part of the spectrum
and consequently there is an uneven density of modes in
the range 0 <fB<k,, as illustrated in Fig. 5 at 13,=4.
Further analysis indicates that the evanescent modes are
also highly dispersive but that their density over the range
— joosB< ~ jO is nearly uniform. The oscillations are
attributed to the effect of the variable density of modes
over the fast-mode spectrum and, hence, to their variable
contribution to the scattering solutions. The period of the
oscillation is thus a result of the transition of an evanescent
mode into the fast-mode spectrum at regular intervals of
0.5 in 1, (as shown in Fig. 5 and as predicted by consider-
ation of Fg(B) in Table I). The oscillation appears to be
about a constant mean value because the slow modes, in
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this case, are only slightly and diminishingly dependent on
go- In general, the oscillation is not necessarily about a
constant mean value but for sufficiently large values of .
this appears to be a valid approximation. The final prop-
erty, slow convergence, is due to the relatively slow in-
crease in the density of fast modes in the lower part of the
fast-mode spectrum.

All slow-mode scattering coefficients exhibit a depen-
dence on t5,. The magnitude of the oscillations will de-
pend. however, on the relative excitation of the lower part
of the fast-mode spectrum.

At this point, it may be appropriate to interpret the
above properties of slow-mode scattering solutions in the
context of the bounded approach. By referring to Fig. 2,
one may recall that in this approach the fast and evanes-
cent modes provide a means of treating the continuous
spectrum approximately. In the present numerical example
the approximation is highly dependent on 7, because a
significant amount of energy in the corresponding un-
bounded problem is scattered into the lower part of the
spectral range 0 < B <k,. The relatively poor coverage of
this part of the spectrum by the fast modes is therefore
accentuated. In theory, this problem may be overcome by
increasing 5, and thereby improving the coverage pro-
vided by the fast modes. In practice, however. the slow
convergence of the oscillations make the required value of
fgo and, hence, N (Section II-B-1) so large that the problem
becomes numerically untractable.

The above discussion points out the limitations of the
straightforward application of the bounded approach, in
which the approximate solution to the unbounded problem
is obtained using a single value of 7,,. That is, the accuracy
of this approach is limited whenever the lower part of the
spectral range 0 <8<k, is well excited. A simple modifi-
cation, however, suggested by the second property of the
slow mode coefficients (i.e.. oscillation about a mean value),
allows all cases to be accurately dealt with, as will be
discussed in the following sections.

C. A Variable- Bound Approach

The apparent oscillation of the slow-mode scattering
coefficients about a constant mean value suggests that the
limiting value of the oscillations (the desired solution) may
be approximated by estimates of these mean values. In the
variable-bound approach, these estimates are obtained by
simply averaging the scattering coefficients over a single
period Afy, = 0.5. This amounts to a rectangular numerical
integration. The results for the previous example, for vari-
ous choices of Atg,. are summarized in Table IV, where an
averaging interval 87, of 0.1 is used. Corresponding re-
sults obtained by applying Rozzi’s method [5] to the origi-
nal problem arc also presented in this table. These are
denoted by R, and R,, for six and ten terms in the
Laguerre polynomial expansion, respectively.

The above results confirm the second property discussed
in the previous section. namely, that the mean value of the
oscillations is not a constant, but for 7,, sufficiently large,
it is approximately so. They also confirm that an accurate

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30. NO. 5, MAY 1982

TABLE 1V
INTEGRATED SCATTERING COEFFICIENTS

s N 15,1 15,
0.9-1.4 0.3258 0.1765 0.4728
1.9-2.4 0.3262 0.1795 0.4790
3.9-4.4 0.3280 0.1819 0.4813

Rg 0.3282 0.1834 0.4940

R 0.3272 0.1814 0.4820

approximation (by comparison with Rozzi's results) to the
limiting value of the oscillations may be obtained by
estimating the mean value. Generally speaking, the esti-
mates can be calculated over a range Aty in which (1, —
1)/ Ay is of the order of one or two and. therefore, the
value of N required to achieve reasonable accuracy is
numerically acceptable.

Thus, by numerically integrating the solutions obtained
over a small range of bound locations, the variable-bound
approach yields accurate approximations to the solutions
of the original unbounded problem. The results of other
examples are presented in Section III.

D. Summarizing Remarks

The solution of either the original (unbounded) or the
modified (bounded) discontinuity problem requires all
components of the complete spectrum to be accurately
accounted for. In the original problem, this requires that a
difficult integration over the continuous spectrum be per-
formed whereas, in the modified problem, this requires that
only a simple summation be performed. The evidence
presented thus far suggests that the summation over the
fast and evanescent modes is equivalent to a numerical
integration over the continuous spectrum in the corre-
sponding original problem. In many cases. the resulting
approximation to the contribution of the continuous spec-
trum is quite adequate and, hence. a straightforward appli-
cation of the bounded approach is sufficient [7]. In other
cases, such as in the example considered in the previous
sections, a further numerical integration over a range of
bound locations is necessary. The deciding factor seems to
be the relative excitation of the lower part of the spectral
range 0 < B <k,. If it is well excited, the highly dispersive
nature of the fast modes (which causes the straightforward
approach to be numerically impractical) conveniently al-
lows the variable-bound approach to vield accurate results
in a numerically more efficient manner. Essentially, the
reason is the variable-bound approach allows better cover-
age of the fast and evanescent mode spectra and, hence, a
more accurate numerical integration over the continuous
spectrum is achieved.

II1.

Now, TE- and TM-mode scattering over a wide range of
discontinuity parameters will be considered in order to
iltustrate the application of the variable-bound approach.
Consideration of the TE-mode case allows a comparison

TE- AND TM-MODE SCATTERING
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with the results obtained using Rozzi’s method while the
TM-mode case is considered since no previous results are
available (to the authors’ knowledge).

A. TE-Mode Incidence

Referring to Fig. 1, the following parameters were cho-
sen: €, =5.0, t{ =0.2¢}, and an H-bound. The normalized
slow-mode scattering coefficients are plotted (solid curves)
in Fig. 6 as a function of ¢2/\,. For convenience, the
curves have been labeled with the standard scattering ma-
trix notation where S, is the normalized scattering coeffi-
cient of the jth mode relative to the ith incident mode. The
single slow mode in waveguide A4 is associated with sub-
script 1, whereas the first three slow modes in waveguide B
are associated with subscripts 2, 3, and 4, respectively. The
solid lines in Fig. 6 were calculated using the procedure
outlined in Section II-C. In most cases, N =10, 8¢z, =0.1,
and Atp, defined over 0.9 to 1.4 were used. In a few
instances, it was necessary to use 6¢z, = 0.05 because of the
large fluctuations of the coefficients (these instances were
mainly associated with incidence of mode 2 from wave-
guide B), whereas, in other cases, (tl” <A, or when the
second and third slow modes in waveguide B were close to
cutoff), N=15 and a Atp, defined over 1.9 to 2.4 were
necessary. The corresponding results for the total radiated
power approximations, obtained by numerically integrat-
ing P, over Atg,, are shown as the solid curves in Fig. 7.
Curve A, denotes incidence of the first siow mode from
waveguide 4 and curves B,, B,. and B,, refer to incidence
of the first three slow modes in waveguide B.

The dashed curves in Figs. 6 and 7 are the results
calculated using Rozzi’s method. For 2 < 0.3\, sixth-order
Laguerre polynomials were used, whereas for 7 =0.3),
tenth-order Laguerre polynomials were used. The excellent
agreement between the solid and dashed curves in these
figures confirms that the bounded approach is effectively a
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Fig. 7. Total normalized radiated power against tf/\ for TE-modes,
same parameters as in Fig,. 6.

means of performing a numerical integration over the
continuous spectrum in the original problem and ap-
parently as accurate a means as that proposed by Rozzi. In
this respect, Rozzi’s method appears to require more
Laguerre polynomials as the number of slow modes in-
creased. Consequently, the computation time for the
numerical integration over the continuous spectrum in-
creased dramatically.? It is also worth mentioning at this
point that the dashed curves in Fig. 7 were computed from
the surface wave coefficients by assuming that power con-
servation held exactly. In the variable-bound approach, the
radiated power is computed directly, maintaining the power
conservation as a useful check. In order to do this using
Rozzi’s method, considerably more computation would be
required.

B. TM-Mode Incidence

The variable-bound approach is applied equally well to
the TM-mode case. This will be demonstrated by consider-
ing the same basic configuration as in the previous section
but with an "E-bound. The results for the slow-mode
scattering coefficients are shown by the solid lines in Fig. 8
and those for the radiated power are shown in Fig. 9. The
annotation on the curves in these figures is identical to that
used in Figs. 6 and 7. In most cases, these results were
calculated using N =15, 8¢5, =0.1, and Atp, was defined
over 0.9 and 1.4. As in the TE-mode case, 8t3,=0.05 or
N =20 with Aty defined over 1.9 to 2.4 were necessary in
some cases. The dashed curves shown in these figures were
calculated with N =40, 8¢5,=0.1, and Aty, defined over

2The increase in the number of terms could be due to the requirement
of higher order polynomials to account for the oscillations of the higher
order surface wave mode fields in the dielectric. If so, the alternative
sequence of expanding functions [5] as proposed by Rozzi may be more
appropriate in such cases, although this has not been confirmed numeri-
cally. '
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Fig. 9. Total normalized radiated power against ¢f/X for TM-modes,
same parameters as in Fig. 8.

3.9 to 4.4. The reason for the discrepancy between the solid
and dashed curves is the relatively large field extent of the
TM-slow modes in waveguide 4 for 7, <A, as will be
discussed in Section IV. The accuracy of the results shown
in Figs. 8 and 9 is expected to be comparable to that in the
TE-mode case—there are no other results to compare with.

It may be of interest to note that field singularities occur
at the dielectric edges in the plane of the discontinuity for
TM-modes but not for TE-modes. Consequently, to achieve
comparable accuracy in applying the bounded approach,
more modes are required for TM cases than the corre-
sponding TE cases. Other similarities and differences be-

tween TE- and TM-mode scattering will be examined in
the following sections.

IV. MODE ORTHOGONALITY AND SCATTERING

To this point, it has been shown that the scattering by
abrupt discontinuities on open dielectric waveguides may
be evaluated accurately and with comparative ease using
the variable-bound approach. In this section, the mecha-
nism of the scattering process is examined in the context of
individual mode interactions. In particular, the close and
meaningful relationship between the scattering properties
and the orthogonality of the modes will be shown. A
mathematically precise statement of this relationship is
given by (5) and (6). However, these equations are not
easily interpreted in terms of individual modes. Thus, a
different mathematical statement will be developed.

Using (3) and (4), the solutions to (1) and (2) may be
expressed in the following form:

Pab+P[ ab [ba
b, = L+ ——" 13
, ZP[ 2 o (13)
P
b 14
- 3 B (14)

where l,k=1,.-o,N, and i denotes incident. Equations
(13) and (14) link individual mode coefficients through
inter-waveguide bi-orthogonality relations. This particular
form of the equations was chosen because the first term in
(13) represents a good approximation for the {b,}. Hence,
the following iterative solution presents itself: i) let the first
order approximation be

a’=0 (15)
Ps+ P
B = 4 ! 16
! 2P1b ( )
and ii) iterate
pet
(J+D — (J)_i"_
al; 2—1b 2p7 (17)
b D = i 4 2 a(;+1>P By’ i
n=1 2Plb
l’kzl’...’N’le,... (18)

The mathematical implications of this iterative technique
appear worthy of a separate investigation and are not
considered here. The iterative scheme, however, provides a
simple interpretation of the scattering process. Namely, the
sequence of events which occur in the plane of the discon-
tinuity is one in which the first-order scattering of the
incident mode (i.e., (15) and (16)) is repeatedly adjusted by
higher order scattering (successive iterations) until the
boundary conditions are satisfied.

In order to test the validity of the above interpretation
and to examine more closely the link between scattering
and mode orthogonality, let us consider the first-order
scattering approximation given by (16). The slow-mode
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Fig. 11. TM-slow-mode transmission coefficients agamst ¢{/A,, same
parameters as in Fig. 10.

transmission coefficients corresponding to those shown in
Figs. 6 and 8 are plotted versus ¢/ /) in Figs. 10 and 11,
respectively. The solid curves were obtained from the full
solution of (5) and (6), whereas the dashed curves represent
the first-order approximation. For the purposes of this
discussion all calculations were done using 75, = 4.0 (i.e.,
no averaging, thus the solutions will be somewhat different
from those shown in Figs. 6—9). The results in Figs. 10 and
11 clearly indicate that (16), and hence the inter-waveguide
bi-orthogonality, accounts for the general characteristics of
the slow mode transmission coefficients in both the TE-
and the TM-mode cases. The differences between the cor-
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responding dashed and solid curves are a measure of the
amount of readjustment (higher order scattering) required
to satisfy the boundary conditions. In many cases, due to
the exceptionally close agreement between the dashed and
the solid curves, the scattering appears to be primarily of
first order.

Equation (16) may also be used to generate first-order
approximations to the transmitted radiated power by sum-
ming the powers in the fast-mode transmission coefficients.
These results are shown as the dotted curves in Fig. 12(a)
and (b) for TE- and TM-modes, respectively. Also shown
in these figures are the curves (solid) for the total radiated
power obtained from the full solution of (5) and (6). The
notation on the solid curves is the same as that used in
Figs. 7 and 9; corresponding dashed curves are denoted by
the primed quantities. For reference, the results corre-
sponding to those shown as Bj, but calculated from the full
solutions, are indicated by the circles at selected points. As
before, the results obtained using (16) give a good indica-
tion of the general characteristics of the full solution.
Generally, cases where the dotted curves are much lower
than the corresponding solid curves appear to occur be-
cause the first-order approximation does not account for
reflected energy (see, for example, the curves B; and Bj).
On the other hand, cases where the dotted curves are much
higher than the solid curves (i.e., B, and Bj in Fig. 12(a))
are generally indicative of significant higher order scatter-
ing. Also, Fig. 12(a) and (b) appear to indicate that radi-
ation is predominantly first order for the lowest order
modes (both TE and TM).

Other interesting aspects of the scattering, over the range
of discontinuities considered, may be inferred from Fig.
12(a) and (b). For example, both figures indicate that there
is relatively little back radiation caused by the lowest order
mode in waveguide A, whereas there is considerable back
radiation caused by the third mode in waveguide B. In
both the TE- and TM-mode cases, there is also significant
higher order scattering associated with the incidence of the
second slow mode in waveguide B.

In the previous discussion, the scattering behavior has
been related to the inter-waveguide bi-orthogonality
through the iterative scheme. It now remains to relate
orthogonality to the field characteristics on a particular
structure. Such a relationship would make it possible to
predict and to qualitatively explain the scattering behavior
of specific modes. In view of the type of guiding structure
considered in this work, the field characteristics most closely
associated with orthogonality is power concentration.

A parameter ¢, may be defined as the value of x (see Fig.
1) such that 99.99 percent of the power in a mode is
contained in the range 0 <<{x|<¢_. In Fig. 13, the values of
t./ A, are plotted versus ¢, /A, for each of the first three
modes in the waveguide considered. The solid curves repre-
sent TE-modes and the dashed curves represent TM-modes.
For reference, the dielectric thickness is shown under the
shaded area. The value of 7, effectively describes the field
extent of the slow modes. Thus, as expected, Fig. 13
indicates that the slow modes tend to have their energy
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confined to the dielectric. The fast modes do not exhibit
this behavior and, hence, a slow mode is expected to
become more orthogonal to the fast modes on the other
side of the discontinuity as ¢, /A, decreases. This simple
argument accounts for several features of the curves shown
in Figs. 10-12. It is perhaps most graphically demonstrated
by curve A4, in Fig. 12(a) which shows the radiation de-
creasing in the range ¢? < 0.20A,. The corresponding range
in waveguide 4 is 1{ <0.04A, for which 7, /A is rapidly

decreasing as shown in Fig. 13. Conversely, over the same
range, the TM slow mode is never well confined and,
therefore, curve A, in Fig. 12(b) indicates that much more
radiation occurs in this case.

V. CONCLUSIONS

The main contribution of this work is the development
of a unified approach (albeit approximate) for dealing with
the problem of an arbitrary abrupt discontinuity on an
open diclectric waveguide. This unification manifests itself
in two aspects of the work. First, the link between the
bounded and the corresponding unbounded problem for
planar dielectric waveguides was more closely examined. It
was shown that, by utilizing the dispersive properties of the
mode spectra of the bounded waveguide, the variable-bound
approach allows the complete mode spectra to be simply
and accurately accounted for. Second, a link between
scattering and inter-waveguide orthogonality was estab-
lished. By interpreting the scattering in terms of a simple
iterative scheme, it was shown that scattering may be
classified as being of first or of higher order depending on
the amount of readjustment needed to satisfy the boundary
conditions in the plane of the discontinuity. Through or-
thogonality, scattering was also shown to be related, ulti-
mately, to the physical characteristics of the mode fields.

Two types of examples were considered in order to
demonstrate the application of the approach used in this
work. Results for TE-mode propagation allowed a com-
parison with corresponding results obtained using Rozzi’s
method over a wide range of discontinuity parameters.
Agreement to within 1 percent was achieved in most cases
by using very modest numbers of modes (N =10). Results
for TM propagation were obtained with similar computa-
tional efficiency, also over a wide range of parameters and
are believed to be of comparable accuracy. Both TE- and
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TM-mode results appeared to confirm the simple interpre-
tation of the scattering process based on mode orthogonal-
ity. This allowed similarities and differences between TE-
and TM-mode scattering to be explained.

It is perhaps most significant that the evidence presented
here indicates that, by appropriate consideration of the
discrete mode spectra of the bounded waveguides, an accu-
rate numerical integration over the continuous spectrum of
the corresponding unbounded waveguide may be per-
formed. This implies that the application of the present
technique depends only upon the one-to-one correspon-
dence of the bounded and unbounded mode spectra, and,
hence, may be applied with confidence to all planar dielec-
tric waveguide problems. Additional analysis, may be nec-
essary for cylindrical structures [10], [11].

APPENDIX [

MobpEe FIELDS

Referring to Table I, the mode fields in the range | x| <¢,
are already cast in the same form (apart from a normaliza-
tion constant) as those used for the corresponding un-
bounded structure [3], [5]. In the range < |x| <14, e, (and,
hence, the other field components) may be written as

e, =Ccospy(x—t,+1,—tp)

=c0s pt{cos py(x — ;) —sin p,(x —t,)tan p,(t, — 1) }.
(19)

Now, using solutions of F(f)
e,.=cos pt;cos po{x —1;)— % sin py¢,sin p,(x —¢,)
2

= (C e/ 4 CHe IP2x
Ce/P*+ Cre /P2

(20)

where

(21)

Equations (20) and (21) are identical to those given by
Marcuse [3] with B, (his notation) equal to one. In a similar
manner. (19) may be rearranged to give the form used by
Rozzi [5]. Thus, at discrete values of 8 given by solutions of
F,(B), the fields of the fast and the evanescent modes are
identical to the fields of the continuous spectrum modes of
the corresponding unbounded waveguide over the range
| x| <1p.

For the slow modes, p, is imaginary, and, hence, in the
range 1, <|x| <t e, may be written as

ngie_f“"(cosp]tl +j%sinplt| .
2

coshy,(x —15)

e, =cos pt
' P "coshy,(t, — 1)

(22)

where p, = jv,. Now, in the limit as 75 — o0

e, =cos pte” T, (23)

Equation (23) can be recognized as the form for a surface
wave mode field. Furthermore, the limiting form of F,(f8)
is given by

pitanp t, =y, (24)
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which is the characteristic equation for the surface wave
modes on the corresponding unbounded structure. Thus,
the slow modes correspond identically to surface wave
modes in the limit as 75 — c0. A similar analysis holds for
TM-modes.

APPENDIX I1

EXPRESSIONS FOR P?, P?, Pdb

nm?

AND P14

In this section, the following functional relationships are
maintained:

sin x

(25)

Sa(x) =
8, =my/ky.  (TM-modes)
=1/kgng. (TE-modes) (26)
8x=1/¢,,  (TM-modes)
=1, (TE-modes). (27)

The values of P* and of P} (n is the mode order) can be
computed from

P, =388 {8xti[1+ Sa(2p},17)]
+(C) ) [1+ Sa(2ps, (11— 1,))]} (28)

where the primed quantities are to be associated with
superscript a for P¢ and b for P} and where C, can be
found in either Table I or Table I1.
The values of P4> and P2¢ can be computed from the
following expression:
P=3p8, (1, +1,+ 1] (29)

where 8, I, I,, and I, are defined in Tables V and VL
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In the above tables
T, = t¢{Sa( S, + P, )ec] + Sal( pt, = Pt )]} (30)

_ sind4,—sinA4, sinA;—sinA, (31)
D3t Pim P Pim

Ty = — (11— 1) {Sa[(p5, + PL.) (11— 15)]
+Sal( pg, — P2 )t = 15)])

2

(32)

where

I

H

Ay ={ps, + Ph )t — Piats
Ay =(P5,+ pha )il = Piats
A= (ps, = Pho)t? — Piats
Ay = (ps, = P )T = Pt
Expressions for 7] and 73 can be obtained from T} and T;,
respectively, by substituting ¢ for ¢{. Expressions for T,

can be obtained from 7, by interchanging superscripts a
and b.
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