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Scattering by Abrupt Discontinuities on
Planar Dielectric Waveguides

G. H. BROOKE AND M. M. Z. KHARADLY

Abstract —Two unifying aspects of the problem of scattering by an

abrupt discontinuity on a planar dielectric waveguide are considered. The

first aspect is concerned with the numerical solution of the scattering

problem through consideration of a corresponding bounded waveguide

problem in which perfect electric or magnetic conductor bounds with

variable locations are introduced. It is shown that the solutions to the

bounded problem, when numerically integrated over a range of bound

locations defined within hsdf a wavelength, allow the complete mode spectra

of the unbounded waveguide to be accurately accounted for. Scattering

solutions for both TE- and TM-modes are presented for a wide range of

discontinuities and, in the TE-mode case, are in agreement with results

obtained using the method due to Rozzi [5]. The second aspect is concerned

with the relationship between scattering and “ inter-waveguide mode ortho-

gonality.” Based on a simple iterative scheme, a meaningful physical

interpretation of the scattering process is developed. This allows the

scattering to be classified as being of first or higher order and to be

explained in terms of the physical characteristics of the mode fields.

I. INTRODUCTION

D IELECTRIC surface waveguides are used in a variety

of applications ranging in frequency from ultrahigh

through optical. Discontinuities in cross section inevitably

occur in any waveguide system due to construction toler-

ances and misalignment in component interconnections. In

many applications, discontinuities are intentionally in-

volved; microwave antennas and feeds and integrated optics

couplers and lenses are examples.
For the purpose of analysis, it is sufficient in many cases

to describe a discontinuity by an abrupt change in cross

section. In other cases, it may be possible to approximate

an arbitrary discontinuity by a succession of abrupt changes

in the waveguide cross section. In all cases, an accurate

theoretical treatment and an understanding of the scatter-

ing properties of an abrupt discontinuity are essential for

the proper design of complex dielectric waveguide compo-

nents and systems.

The exact solution of the discontinuity problem on an

open waveguide requires that the field contributions from

the continuous spectrum be specified over the infinite
waveguide cross section. This results in complex spatial

and spectral integrations for which exact evaluations do
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not appear possible. Consequently, previous investigations

of the dielectric waveguide step discontinuity problem have

been concerned with approximate solution techniques (e.g.,

[1]-[4]). These techniques are limited to various degrees in

the scope of their applicability. Basically, this is due to the

manner in which the continuous spectrum of modes on the

unbounded waveguide is treated. More recently, Rozzi [5]

has described a new technique which employs Laguerre

polynomials in a Ritz-Galerkin variational solution and

which has been successfully applied to TE-mode scattering

by a step on a planar dielectric waveguide. This solution

technique does not appear to be as readily applied to the

TM-mode case, however.

The approach presented in this paper circumvents some

inherent difficulties associated with the previous methods

and it is applicable to dielectric waveguides having arbi-

trary permittivity and to step discontinuities of any size.

Essentially, by maintaining a direct relationship to modal

quantities, it is mathematically less complex, provides some

insight into the scattering process and, finally, is as easily

applied to TM- as it is to TE-mode scattering. The basis of

the present approach is the reduction of the unbounded

(original) problem to a bounded (modified) problem where

the open structure is enclosed by perfect electric or mag-

netic conductors. The solution to the original problem is

then extracted from that of the corresponding modified

problem [6], [7]. This process leads to the development of a

simple and accurate numerical technique for solving the

discontinuity problem in the “ variable-bound” approach

and of a simple and meaningful interpretation of the

scattering process.

The main points discussed in this paper include: a) the

limitations of the straightforward bounding procedure ap-

plied hitherto; b) the procedures necessary to fully and

accurately account for the continuous spectrum; c) the

relationships between the scattering process and mode

orthogonality; and d) the characteristics of TE- and TM-

mode scattering over a wide range of discontinuities.

II. THE BOUNDED APPROACH

The bounded approach involves bounding the dielectric

waveguide with either perfect electric (E-bound) or perfect

magnetic (H-bound) conductors, as shown in Fig. 1, and

then solving the bounded problem using mode matching.

Because of the one-to-one correspondence of the mode

spectra of the bounded and unbounded configurations, the
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Fig 1.
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Fig. 2. Mode spectra in the k-plane,

solution for the bounded problem provides an approximate

solution of the original problem. A k-plane representation

of the mode spectra for the two configurations is shown in

Fig. 2. For the bounded configuration, the modes in “the

spectral ranges k. GP ~ii,ko, OSPs ko, and — @ <P
< — jO are usually referred to as slow, fast, and evanes-

cent, respectively, whereas in the unbounded configuration

the corresponding modes are referred to as surface wave,

radiation, and attenuated radiation, respectively [7]. In the

above, /? is the propagation coefficient, k. = 2 n/ X ~ is the

free-space wavenumber and c, is the relative permittivity of

the dielectric.

A summary of the functional form of the modes in a

uniform waveguide (either waveguide A or waveguide B in

Fig. 1) is given in Table I for TE-modes (H-bound) and in

Table II for TM-modes ( E-bound).

In the above tables, p] = (crkj –P2)’/2 and P2 = (k: –

/?2)1/2 are the transverse propagation coefficients, To is the

intrinsic impedance of free space, and FE(~) and FM(P)

are the characteristic equations of the structure for TE- and

TM-modes, respectively. The correspondence between the

fields of the bounded and unbounded configurations is

examined in Appendix I. The analysis indicates that the
fast and the evanescent modes are functionally identical to

the continuous spectrum modes at discrete values of P

(defined by solutions of FE(P) or FJ P) in the appropriate

spectral ranges), whereas the slow and the surface wave

modes become functionally identical in the limit as t B - CQ.

in practice, however, tB need only be a few free-space
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wavelengths for the slow and the surface wave modes to

exhibit virtually identical behavior.

The correspondence of the slow and surface wave modes

is an important factor affecting the irnplementation of the

bounded approach and, hence, will be illustrated by ex-

amining the value of the propagation coefficient P as a

function of tB. Consider an example in which e,= 5.0 and

t] = 0.01 AO. Fig. 3 gives plots of the ratio of the propaga-

tion coefficients of the slow and of the surface wave modes

versus ( tB – t, )/A. for each type of lmode with each type

of bound. The graphs for TE- ( E-bound) and for TM-

(H-bound) modes exhibit a cutoff behavior and thus sug-

gest that for these mode types the respective bounds are, in

general, inappropriate. More appropriately, however, the

graphs for TE- (H-bound) and for TM- (E-bound) modes

exhibit no low-frequency cutoff and also indicate that the
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The relations in (7) and (8) describe the “ inter-waveguide

orthogonality” of the modes for which explicit expressions

are given in Appendix II. Expressions for P; and P: are

also given in Appendix II. Thus, the mode coefficients

08
{bHl} are obtained by solving the linear system of (5) and

Fig 3 Ratio of slow to surface wave mode propagation coefficients
the mode coefficients {an ] are obtained by substitution

against (lB–fl)/AO: 6,= 5.0, 11=O.OIAO. into (6).

It is appropriate at this point to define a set of normal-

values of the slow-mode propagation coefficients do not

differ significantly from those for the corresponding surface

wave modes over a wider range of ( tB – t I )/ A o.

It may be noted that in the above example the surface

wave mode is relatively loosely bound to the dielectric. As
t, or r} is increased, there will be even less discrepancy

between the values of P for much smaller values of (tB –

tl )/Ao, except for higher order S1OW modes close to cutoff.

A. Mode Matching

Referring to Fig. 1, the transverse electric and magnetic

field vectors are denoted by e and h, respectively. Let a

mode of unit amplitude be incident from waveguide A. The

mode-matching equations in the plane of the discontinuity

may be written as

~=1 nl=l

(2)
n=l m=l

In the above equations, the subscript i denotes the incident

mode, and superscripts a and b denote waveguides A and
B, respectively. The expressions for the fields in (1) and (2)

can be found in Table I or Table II.

In order that solutions for the scattering coefficients
{a.. b,,} may be obtained, the infinite sums in (1) and (2)

are truncated. In this work, equal numbers of modes N are

used to approximate the fields on either side of the dis-

continuity, as has been established in [8]. The conventional

approach [9] to solving (1) and (2) is to use the orthogonal-

it y relations between the modes given by

ized mode coefficients as follows:

ii,, = an(PHa/P,”)”2 (9)

& = b~(P:/P’’)1’2, m,n=l, . . ..N. (lo)

These coefficients may be used to obtain a useful check on

the mode-matching solutions— the power conservation er-

ror P, being given by

where NP” and NPh are the total numbers of propagating

modes in waveguides A and B, respectively. Furthermore,

the relative power contained in the fast modes is given by

where N,” and N,b are the numbers of slow modes in

waveguides A and B, respectively. As will be illustrated in

Section III, the value of P, is an approximation to the

normalized radiated power in the original problem. In the

discussion and analysis to follow, coefficients {a.} and

{bM} will be conventionally associated with waveguides A

and B, respectively.

B. Accuracy of Solutions

The accuracy of the solution of the modified problem, as

an approximation to the solution of the original problem,

depends mainly upon two factors: namely, the bound

location t ~ and the number of modes N. It will be shown

that the value of N required for a certain accuracy will, in

general, depend on the choice of tB. The effect of these

/
‘Be: x h~.a=dX=8klpl (3) factors will be demonstrated by considering a numerical

o example (c, = 5.0, tf = 0.07A0, and t! = 0.35AO) in which

J

tB b the second slow mode from waveguide B is incident. Thise~ X h~.a,dx=8~1P~ (4)
o mode has been chosen because its behavior is typical of
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TABLE 111
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30 .403? .55’.5 2>:10-5 .429! .593’. . 00C9

40 .40s2 .55$6 1X1O-5 .429.4 .5961 .0001
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a
.
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cases in which the scattering solutions of the bounded I
problems are sensitive to the ~ound location. In order that I
a comparison with the results obtained using Rozzi’s

o ~-
method may eventually be made, TE-mode propagation is o 20 40

discussed.

1) The Dependence on N: The effect of N can be de-
t~o

duced by computing the solution of the above example for Fig 4. Magnitude of the slow-mode reflection coefficient Ib2 I against

two different values of tB and by observing the behavior of
tBo: c,= 5.0, f;= 0.21:, f!= 0.35A0.

the solutions as a function of the number of modes. The

results are summarized in Table III where the reflection < I

coefficient b. of the incident mode is tabulated for various 51.
values of N and for each value of t ~. = t ~ / A o. The corre-

sponding values of P, are also given in this table.

The above results are typical of the convergence as a

function of N. It may be noted that faster convergence

occurs for the smaller value of t~o. These results, which

imply that higher order modes are excited more readily as

t~O increases, may be explained as follows. The excitation

of the high-order evanescent modes depends on the inter-

waveguide orthogonality of these modes with respect to the

low-order slow modes and, hence, is related to the trans-

verse field behavior of the modes in the range t, < Ix I s ?~;

in this range, the slow modes have no phase reversals t Ro\ -.
whereas the evanescent modes have approximately M phase Fig, 5, Fast-mode dispersion characteristics as a function of t~o: t, = 5.0,

reversals (M is the mode order). Accordingly, from sta- t,=o.35Ao.
tionary phase arguments, the high-order modes tend to be

orthogonal to the low-order modes as M becomes large.

However, as t~O increases, the Mth mode tends to be less

orthogonal to the slow modes because the M phase rever-

sals are now more dispersed along the x coordinate.

An important feature of the results shown in Table III is

the different value of bz to which the solution converges for

different values of t~o.

2) The Dependence on t ~: The magnitude of bz, in the

previous example, is plotted versus tBo in Fig. 4. These

results were calculated with N =401 to achieve “a value of

P, less than 0.5 percent over the range of large tBo. The

oscillating value of Ibz I appears to have the following

properties: i) a period of oscillation equal to 0.5; ii) a

constant mean value; and iii) a slow rate of convergence.

These properties may be qualitatively explained by consid-

ering the dispersion characteristics of the modes as func-

tions of t ~.. Fig. 3 shows that the dispersion of the slow

modes is slight for practical values of tBo and diminishes

with increasing t ~o. The normalized propagation coeffi-

cients ~/k. of the fast-modes in waveguide B are shown in

Fig. 5 as a function of l~o. It is evident that these modes

are highly dispersive over the lower part of the spectrum

and consequently there is an uneven density of modes in

the range Os ~ < ko, as illustrated in Fig. 5 at t~O = 4.

Further analysis indicates that the evanescent modes are

also highly dispersive but that their density over the range
– jce < ~ < – jO is nearly uniform. The oscillations are

attributed to the effect of the variable density of modes

over the fast-mode spectrum and, hence, to their variable

contribution to the scattering solutions. The period of the

oscillation is thus a result of the transition of an evanescent

mode into the fast-mode spectrum at regular intervals of

1For convenience, this large value of N was used over the whole range,
0.5 in tBo (as shown in Fig. 5 and as predicted by consider-

although the results m the previous section mdlcate that this was not ation of FJ ~ ) in Table I). The oscillation appears to be

necessary. about a constant mean value because the slow modes, in
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this case. are only slightly and diminishingly dependent on

t~O. In general, the oscillation is not necessarily about a

constant mean value but for sufficiently large values of 1~(,,

this appears to be a valid approximation. The final prop-

erty, slow convergence, is due to the relatively slow in-

crease in the density of fast modes in the lower part of the

fast-mode spectrum.

All slow-mode scattering coefficients exhibit a depen-

dence on t~O. The magnitude of the oscillations will de-

pend, however, on the relative excitation of the lower part

of the fast-mode spectrum.

At this point, it may be appropriate to interpret the

above properties of slow-mode scattering solutions in the

context of the bounded approach. By referring to Fig. 2,

one may recall that in this approach the fast and evanes-

cent modes provide a means of treating the continuous

spectrum approximately. In the present numerical example

the approximation is highly dependent on tBo because a

significant amount of energy in the corresponding un-

bounded problem is scattered into the lower part of the

spectral range O< ~ < kO. The relatively poor coverage of

this part of the spectrum by the fast modes is therefore

accentuated. In theory, this problem may be overcome by

increasing ~~0 and thereby improving the coverage pro-

vided by the fast modes. In practice, however. the slow

convergence of the oscillations make the required value of

t~o and, hence, N (Section II-B-1) so large that the problem

becomes numerically untractable.

The above discussion points out the limitations of the

straightforward application of the bounded approach, in

which the approximate solution to the unbounded problem

is obtained using a single value of t~O. That is, the accuracy

of this approach is limited whenever the lower part of the

spectral range O< ~ < k. is well excited. A simple modifi-

cation, however, suggested by the second property of the

slow mode coefficients (i.e., oscillation about a mean value),

allows all cases to be accurately dealt with, as will be

discussed in the following sections.

C. A Variable-Bound Approach

The apparent oscillation of the slow-mode scattering

coefficients about a constant mean value suggests that the

limiting value of the oscillations (the desired solution) may

be approximated by estimates of these mean values. In the

variable-bound approach, these estimates are obtained by

simply averaging the scattering coefficients over a single

period ~t~t) = 0.5. This amounts to a rectangular numerical

integration. The results for the previous example, for vari-

ous choices of At m. are summarized in Table IV+ where an
averaging interval i$t~t) of 0.1 is used. Corresponding re-

sults obtained by applying Rozzi’s method [5] to the origi-

nal problem are also presented in this table. These are

denoted by R, and R,0 for six and ten terms in the

Laguerre polynomial expansion, respectively.

The above results confirm the second property discussed

in the previous section, namely, that the mean value of the

oscillations is not a constant, but for t~(l sufficiently large,

it is approximately so. They also confirm that an accurate

TABLE IV
INTEGRATEDSCATTERINGCOEFFICIENTS

0.9-1.4 0.325s 0.1765 0.4728

1.9–2.4 0.3262 0.1795 0.4790

3.9-4.4 0.3280 0.1819 0.4813

‘6
0.3282 0.1934 (3.4940

%0
0.3272 0.1314 0.482O

r

approximation (by comparison with Rozzi’s results) to the

limiting value of the oscillations may be obtained by

estimating the mean value. Generally speaking, the esti-

mates can be calculated over a range At~O in which ( tB —

t I )/~i3 is of the order of one or two and, therefore, the
value of N required to achieve reasonable accuracy is

numerically acceptable.

Thus, by numerically integrating the solutions obtained

over a small range of bound locations, the variable-bound

approach yields accurate approximations to the solutions

of the original unbounded problem. The results of other

examples are presented in Section 111.

D. Summarizing Renlarks

The solution of either the original (unbounded) or the

modified (bounded) discontinuity problem requires all

components of the complete spectrum to be accurately

accounted for. In the original problem, this requires that a

difficult integration over the continuous spectrum be per-

formed whereas, in the modified problem, this requires that

only a simple summation be performed. The evidence

presented thus far suggests that the summation over the

fast and evanescent modes is equivalent to a numerical

integration over the continuous spectrum in the corre-

sponding original problem. In many cases, the resulting

approximation to the contribution of the continuous spec-

trum is quite adequate and, hence, a straightforward appli-

cation of the bounded approach is sufficient [7]. In other

cases, such as in the example considered in the previous

sections, a further numerical integration over a range of

bound locations is necessary. The deciding factor seems to

be the relative excitation of the lower part of the spectral

range O< ~ < ko. If it is well excited, the highly dispersive

nature of the fast modes (which causes the straightforward

approach to be numerically impractical) conveniently al-

lows the variable-bound approach to yield accurate results

in a numerically more efficient manner. Essentially, the

reason is the variable-hound approach allows better cover-

age of the fast and evanescent mode spectra and, hence, a

more accurate numerical integration over the continuous

spectrum is achieved.

III. TE- AND TM-MoDE SCATTERING

Now, TE- and TM-mode scattering over a wide range of

discontinuity parameters will be considered in order to

illustrate the application of the variable-bound approach.

Consideration of the TE-mode case allows a comparison
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Fig. 6.
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t:/ke

TE-slow-mode scattering coefficients against t f/ A”: ~r= 5.(3,

- tf = 0.2 tf. — variable-bound approach. – – – Rozzi’s approach.

with the results obtained using Rozzi’s method while the

TM-mode case is considered since no previous results are

available (to the authors’ knowledge).

A. TE - Mode Incidence

Referring to Fig. 1, the following parameters were cho-

sen: c,= 5.0, t;= 0.2t~, and an H-bound. The normalized

slow-mode scattering coefficients are plotted (solid curves)

in Fig. 6 as a function of t f’/ A ~. For convenience, the

curves have been labeled with the standard scattering ma-

trix notation where S,J is the normalized scattering coeffi-

cient of thej th mode relative to the i th incident mode. The

single slow mode in waveguide A is associated with sub-

script 1, whereas the first three slow modes in waveguide B

are associated with subscripts 2, 3, and 4, respectively. The

solid lines in Fig. 6 were calculated using the procedure

outlined in Section II-C. In most cases, N = 10, t3t~0 = 0.1,

and At~O defined over 0.9 to 1.4 were used. In a few

instances, it was necessary to use ~tBo = 0.05 because of the

large fluctuations of the coefficients (these instances were

mainly associated with incidence of mode 2 from wave-

guide B), whereas, in other cases, ( tf’ < AO or when the

second and third slow modes in waveguide B were close to

cutoff), N =15 and a AtBo defined over 1.9 to 2.4 were

necessary. The corresponding results for the total radiated

power approximations, obtained by numerically integrat-

ing P, over AtBO, are shown as the solid curves in Fig. 7.

Curve Al denotes incidence of the first slow mode from
waveguide A and curves B,, Bz, and B3, refer to incidence

of the first three slow modes in waveguide B.

The dashed curves in Figs. 6 and 7 are the results

calculated using Rozzi’s method. Fort f < 0.3A ~, sixth-order

Laguerre polynomials were used, whereas for tf’ a 0.3A0

tenth-order Laguerre polynomials were used. The excellent

agreement between the solid and dashed curves in these

figures confirms that the bounded approach is effectively a

100

1 \

B2

80

20

: \

Al
‘\

B,’

0

0 0.2 04 06

t!’/h

Fig. 7. Total normalized radiated power against t f/ A~ for TE-modes,
same parameters as in Fig. 6.

means of performing a numerical integration over the

continuous spectrum in the original problem and ap-

parently as accurate a means as that proposed by Rozzi. In

this respect, Rozzi’s method appears to require more

Laguerre polynomials as the number of slow modes in-

creased. Consequently, the computation time for the

numerical integration over the continuous spectrum in-

creased dramatically.2 It is also worth mentioning at this

point that the dashed curves in Fig. 7 were computed from

the surface wave coefficients by assuming that power con-

servation held exactly. In the variable-bound approach, the

radiated power is computed directly, maintaining the power

conservation as a useful check. In order to do this using

Rozzi’s method, considerably more computation’ would be

required.

B. TM-Mode Incidence

The variable-bound approach is applied equally well to

the TM-mode case. This will be demonstrated by consider-

ing the same basic configuration as in the previous section

but with an “E-bound. The results for the slow-mode

scattering coefficients are shown by the solid lines in Fig. 8

and those for the radiated power are shown in Fig. 9. The

annotation on the curves in these figures is identical to that

used in Figs. 6 and 7. In most cases, these results were

calculated using N = 15, i$t~o = 0.1, and A tBo was defined

over 0.9 and 1.4. As in the TE-mode case, 8tBo = 0.05 or

N =20 with At~O defined over 1.9 to 2.4 were necessary in

some cases. The dashed curves shown in these figures were

calculated with N = 40, ~t~o = 0.1, and A tBo defined over

2The increase in the number of terms could be due to the requirement
of higher order polynomials to account for the oscillations of the higher
order surface wave mode fields in the dielectric. If so, the alternative
sequence of expanding functions [5] as proposed by Rozzi may be more
appropriate in suchcases, although this has not been confirmed numeri-
cally.
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1.0 4

-.
0 02 04 0.6

t?/AO

Fig. 8. TM-slow-mode scattering coefficients against t ~/ A. (variable-
bound approach): c,= 5.0, tf = 0.2tf. — N =15 with AtB over 0.9 to
1.4---- N= 40 with AtB over 3.9 to 4.4.
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Fig. 9. Total normalized radiated power against t~/Ao for TM-modes,
same parameters as in Fig. 8.

3.9 to 4.4. The reason for the discrepancy between the solid

and dashed curves is the relatively large field extent of the

TM-slow modes in waveguide A for tl ~ XO, as will be

discussed in Section IV. The accuracy of the results shown

in Figs. 8 and 9 is expected to be comparable to that in the

TE-mode case—there are no other results to compare with.

It maybe of interest to note that field singularities occur

at the dielectric edges in the plane of the discontinuity for
TM-modes but not for TE-modes. Consequently, to achieve

comparable accuracy in applying the bounded approach,

more modes are required for TM cases than the corre-

sponding TE cases. Other similarities and differences be-

tween TE- and TM-mode scattering will be examined in

the following sections.

IV. MODE ORTHOGONALITY AND SCATTERING

To this point, it has been shown that the scattering by

abrupt discontinuities on open dielectric waveguides may

be evaluated accurately and with comparative ease using

the variable-bound approach. In this section, the mecha-

nism of the scattering process is examined in the context of

individual mode interactions. In particular, the close and

meaningful relationship between the scattering properties

and the orthogonality of the modes will be shown. A

mathematically precise statement of this relationship is

given by (5) and (6). However, these equations are not

easily interpreted in terms of individual modes. Thus, a

different mathematical statement will be developed.

Using (3) and (4), the solutions to (1) and (2) may be

expressed in the following form:

where l,k= l,... , N, and i denotes incident. Equations

(13) and (14) link individual mode coefficients through

inter-waveguide bi-orthogonalit y relations. This particular

form of the equations was chosen because the first term in

(13) represents a good approximation for the {b~}. Hence,

the following iterative solution presents itself: i) let the first

order approximation be

(16)

and ii) iterate

l,k=l,... ,N, J=l, . . . . (18)

The mathematical implications of this iterative technique

appear worthy of a separate investigation and are not

considered here. The iterative scheme, however, provides a

simple interpretation of the scattering process. Namely, the

sequence of events which occur in the plane of the discon-

tinuity is one in which the first-order scattering of the

incident mode (i.e., (15) and (16)) is repeatedly adjusted by

higher order scattering (successive iterations) until the

boundary conditions are satisfied.

In order to test the validity of the above interpretation

and to examine more closely the link between scattering

and mode orthogonality, let us consider the first-order

scattering approximation given by (16). The slow-mode
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Fig. 1I. TM-slow-mode transmission coefficients against t~/ A., same
parameters as in Fig. 10.

transmission coefficients corresponding to those shown in

Figs. 6 and 8 are plotted versus t~/AO in Figs. 10 and 11,

respectively. The solid curves were obtained from the full

solution of (5) and (6), whereas the dashed curves represent

the first-order approximation. For the purposes of this

discussion all calculations were done using t~O = 4.0 (i.e.,

no averaging, thus the solutions will be somewhat different

from those shown in Figs. 6-9). The results ih Figs. 10 and

11 clearly indicate that (16), and hence the inter-waveguide

bi-orthogonality, accounts for the general characteristics of

the slow mode transmission coefficients in both the TE-

and the TM-mode cases. The differences between the cor-

responding dashed and solid curves are a measure of the

amount of readjustment (higher order scattering) required

to satisfy the boundary conditions. In many cases, due to

the exceptionally close agreement between the dashed and

the solid curves, the scattering appears to be primarily of

first order.

Equation (16) may also be used to generate first-order

approximations to the transmitted radiated power by sum-

ming the powers in the fast-mode transmission coefficients.

These results are shown as the dotted curves in Fig. 12(a)

and (b) for TE- and TM-modes, respectively. Also shown

in these figures are the curves (solid) ,for the total radiated

power obtained from the full solution of (5) and (6). The

notation on the solid curves is the same as that used in

Figs. 7 and 9; corresponding dashed curves are denoted by

the primed quantities. For reference, the results corre-

sponding to those shown as B;, but calculated from the full

solutions, are indicated by the circles at selected points. As

before, the results obtained using (16) give a good indica-

tion of the general characteristics of the full solution.

Generally, cases where the dotted curves are much lower

than the corresponding solid curves appear to occur be-

cause the first-order approximation does not account for

reflected energy (see, for example, the curves B3 and B;).

On the other hand, cases where the dotted curves are much

higher than the solid curves (i.e., Bz and B; in Fig. 12(a))

are generally indicative of significant higher order scatter-

ing. Also, Fig. 12(a) and (b) appear to indicate that radi-

ation is predominantly first order for the lowest order

modes (both TE and TM).

Other interesting aspects of the scattering, over the range

of discontinuities considered, may be inferred from Fig.

12(a) and (b). For example, both figures indicate that there

is relatively little back radiation caused by the lowest order

mode in waveguide A, whereas there is considerable back

radiation caused by the third mode in waveguide B. In

both the TE- and TM-mode cases, there is also significant

higher order scattering associated with the incidence of the

second slow mode in waveguide B.
In the previous discussion, the scattering behavior has

been related to the inter-waveguide bi-orthogonality

through the iterative scheme. It now remains to relate

orthogonality to the field characteristics on a particular

structure. Such a relationship would make it possible to

predict and to qualitatively explain the scattering behavior

of specific modes. In view’ of the type of guiding structure

considered in this work, the field characteristics most closely

associated with orthogonality is power concentration.

A parameter tc maybe defined as the value of x (see Fig.

1) such that 99.99 percent of the power in a mode is

contained in the range O< Ix I < tc. In Fig. 13, the values of

t ~\ A ~ are plotted versus t,\ A ~ for each of the first three
modes in the waveguide considered. The solid curves repre-

sent TE-modes and the dashed curves represent TM-modes.

For reference, the dielectric thickness is shown under the

shaded area. The value of tc effectively describes the field

extent of the slow modes. Thus, as expected, Fig. 13

indicates that the slow modes tend to have their energy
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decreasing as shown in Fig. 13. Conversely, over the same

range, the TM slow mode is never well confined and,

therefore, curve A, in Fig. 12(b) indicates that much more

radiation occurs in this case.

V. CONCLUSIONS

The main contribution of this work is the development

of a unified approach (albeit approximate) for dealing with

the problem of an arbitrary abrupt discontinuity on an

open dielectric waveguide. This unification manifests itself

in two aspects of the work. First, the link between the

bounded and the corresponding unbounded problem for
\

‘L
i

\ \ planar dielectric waveguides was more closely examined. It
\ \

\
\ \ was shown that, by utilizing the dispersive properties of the

\

\ \
\ \ mode spectra of the bounded waveguide, the variable-bound
\ . approach allows the complete mode spectra to be simply

o 02 04 0,6

tm

Fig. 13. Slow-mode power concentration against tl / Lo: c,= 5.0. —
TE-modes. – – – TM-modes.

confined to the dielectric. The fast modes do not exhibit

this behavior and, hence, a slow mode is expected to

become more orthogonal to the fast modes on the other

side of the discontinuity y as tC/ A ~ decreases. This simple

argument accounts for several features of the curves shown

in Figs. 10– 12. It is perhaps most graphically demonstrated

by curve A ~ in Fig. 12(a) which shows the radiation de-

creasing in the range t f’ <0.20 A ~. The corresponding range

in waveguide A is t f < 0.04A,0 for which t,/ A ~ is rapidly

and accurately accounted for. Second, a link between

scattering and inter-waveguide orthogonality was estab-

lished. By interpreting the scattering in terms of a simple

iterative scheme, it was shown that scattering may be

classified as being of first or of higher order depending on

the amount of readjustment needed to satisfy the boundary
conditions in the plane of the discontinuity. Through or-

thogonality, scattering was also shown to be related, ulti-

mately, to the physical characteristics of the mode fields.

Two types of examples were considered in order to

demonstrate the application of the approach used in this

work. Results for TE-mode propagation allowed a com-

parison with corresponding results obtained using Rozzi’s

method over a wide range of discontinuity parameters.

Agreement to within 1 percent was achieved in most cases

by using very modest numbers of modes (N= 10). Results

for TM propagation were obtained with similar computa-

tional efficiency, also over a wide range of parameters and

are believed to be of comparable accuracy. Both TE- and



BROOKE AND KHARADLY: SCATTERING BY ABRUPT DISCONTINUITIES

TM-mode results appeared to confirm the simple interpre-

tation of the scattering process based on mode orthogonal-

ity. This allowed similarities and differences between TE-

and TM-mode scattering to be explained.

It is perhaps most significant that the evidence presented

here indicates that, by appropriate consideration of the

discrete mode spectra of the bounded waveguides, an accu-

rate numerical integration over the continuous spectrum of

the corresponding unbounded waveguide may be per-

formed. This implies that the application of the present

technique depends only upon the one-to-one correspon-

dence of the bounded and unbounded mode spectra, and,
hence, may be applied with confidence to all planar dielec-

tric waveguide problems. Additional analysis, may be nec-

essary for cylindrical structures [10], [11].

APPENDIX I

MODE FIELDS

Referring to Table I, the mode fields in the range ].x I <11

are already cast in the same form (apart from a normaliza-

tion constant) as those used for the corresponding un-
bounded structure [3], [5]. In the range t G lx I ~ t~, e, (and,

hence, the other field components) may be written as

e, =Ccospz(x –t, +tl –tB)

=cospltl{cos pz(x–tl )–sinpz(x –tl)tanpz(tl–t~)}.

(19)

Now, using solutions of FE( ~)

ey=cospltl cospz(x –tl)–fi sinplt, sinpz(x -t,)

= C eJP,~ + Ce*e–JP,~
e (20)

where

( )
C,=~e-Jp2t1 cosp}tl + j~sinpltl . ‘(21)

Equations (20) and (21 ) are identical to those given by

Marcuse [3] with B, (his notation) equal to one. In a similar

manner, (19) may be rearranged to give the form used by

Rozzi [5]. Thus, at discrete values of ~ given by solutions of

FL(~), the fields of the fast and the evanescent modes are

identical to the fields of the continuous spectrum modes of

the corresponding unbounded waveguide over the range

lx\<tB.

For the slow modes, p2 is imaginary, and, hence, in the

range t, < Ix I < t ~, e~ may be written as

coshyj(x – t~)
e, =cospltl

coshyz(tl –t~)
(22)

where p, = ~y.. Now, in the limit as tB + cc

e, =cospltle –y2(l-rl) (23)

Equation (23 ) can be recognized as the form for a surface

wave mode field. Furthermore, the limiting form of F,:(~)

is given by

Pltanplt, =yl (24)
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TABLE V
TE-MoDEs— H-BOUND

— . .

1:: - 6: 1,:::/ (;’,, t

TABLE VI
TM-MoDEs— E-BOUND

I .—— b

which is the characteristic equation for the surface wave

modes on the corresponding unbounded structure. Thus,

the slow modes correspond identically to surface wave

modes in the limit as t~ + m. A similar analysis holds for

TM-modes.

APPENDIX II

EXPRESSIONS FOR P;, Pnb,Pn”~, AND P:;

In this section, the following functional relationships are

maintained:

Sa(x)=y (25)

~k = qO/kO, (TM-modes)

= l/koqO, (TE-modes) (26)

8R=l/er, (TM-modes)

=1, (TE-modes).

The values of Pn” and of P: (n is the mode

computed from

‘;=+~;ak{dRtf[l +Sa(2p;IItf)]

(27)

order) can be

‘ ( ‘-tJ)]} (28)+(c; )2[l+sa(2P2,, tl

where the primed quantities are to be associated with

superscript a for P,; and b for P.b and where C,; can be

found in either Table I or Table II.
The values of P~~ and P~~ can be computed from the

following expression:

P=+&5k[I, +12+13] (29)

where ~, 11, 12, and 1~ are defined in Tables V and VI.
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In the above tables

T, =t:{Sa[(pf,l +p!~)t:] +~a[(p?n ‘P?m)~;]} (30)

sin A1 —sin A2 sin A~—sin A4
Tz = +

P;,, + dm P:. – P;???
(31)

T,= –(t:–tB){Sa[(P;n +P;m)(&~ B)]

b )(tf-iB)]}+ ~~[(P;,l – P2rl (32)

where

As = (p~n ‘p!n,)t? ‘p;ntB

A4 = (P;. ‘pY.l)tf–@ntB -

Expressions for T; and T; can be obtained from T] and T~,

respectively, by substituting t (’ for t f. Expressions for T:

can be obtained from T2 by interchanging superscripts a

and b.
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